Certificates
Please check this page frequently for new downloadable files including MSDS sheets, OMRI Certificates, research papers, case studies, and other useful material about the positive experiences being reported about EM Technology®.
EM-1 microbial products (Microbial Inoculant, Waste Treatment, Septic Treatment, and Compost Activator) and PRO EM-1 Probiotic are now USDA Organic certified through CCOF. Click the links below to receive your organic certificates and the client profile for your organic inspection. Please note, if you are an organic farm, you will need the OMRI Listing certificates for EM-1, not these.
Organic Certificate for EM-1 products and Pro EM-1 Probiotic.
Client Profile for EMRO USA, Inc dba EMRO USA Effective Microorganisms.
EM-1 Microbial Inoculant has been OMRI Listed every year since 1994.
For operations that are certified organic, you'll save some time by having current copies of the OMRI Listing Certificates at time of inspection. Prepare 2 binders with all the documents your inspector will need. Keep one for yourself and give your inspector the other one. This will save you time and money. You can always get copies from OMRI.org and see the current list of allowed substances on their website. New certificates are issued some time toward the end of every calendar year.
EM-1® Microbial Inoculant, Ag1000® Organic, and EM-1® Waste Treatment are OMRI Listed without restrictions. "Allowed A". The OMRI Listing complies with the USDA National Organic Program for Certified Organic Producers.
Current OMRI Certificates are available on the OMRI website:
Click here for all current TeraGanix OMRI Certificates.
If you need a Safety Data Sheet for your operation, we have them right here for you to download anytime you need one.
Ag1000 SDS
Ag1000 Organic SDS
Bokashi SDS
EM1 Waste Treatment SDS
EM1 Microbial Inoculant SDS
Wt1000 SDS
Beneficial and Effective Microorganisms® for a Sustainable Agriculture and Environment
Dr. Teruo Higa & Dr. James F. Parr*
Professor of Horticulture, University of the Ryukyus Okinawa, Japan & *Soil Microbiologist
Agricultural Research Service, US. Department of
Agriculture Beltsville, Maryland, USA
INTRODUCTION
The uniqueness of microorganisms and their often unpredictable nature and biosynthetic capabilities, given a specific set of environmental and cultural conditions, has made them likely candidates for solving particularly difficult problems in the life sciences and other fields as well. The various ways in which microorganisms have been used over the past 50 years to advance medical technology, human and animal health, food processing, food safety and quality, genetic engineering, environmental protection, agricultural biotechnology, and more effective treatment of agricultural and municipal wastes provide a most impressive record of achievement. Many of these technological advances would not have been possible using straightforward chemical and physical engineering methods, or if they were, they would not have been practically or economically feasible.
Nevertheless, while microbial technologies have been applied to various agricultural and environmental problems with considerable success in recent years, they have not been widely accepted by the scientific community because it is often difficult to consistently reproduce their beneficial effects. Microorganisms are effective only when they are presented with suitable and optimum conditions for metabolizing their substrates including available water, oxygen (depending on whether the microorganisms are obligate aerobes or facultative anaerobes), pH and temperature of their environment. Meanwhile, the various types of microbial cultures and inoculants available in the market today have rapidly increased because of these new technologies. Significant achievements are being made in systems where technical guidance is coordinated with the marketing of microbial products. Since microorganisms are useful in eliminating problems associated with the use of chemical fertilizers and pesticides, they are now widely applied in nature farming and organic agriculture (Higa, 1991; Parr et al 1994).
Environmental pollution, caused by excessive soil erosion and the associated transport of sediment, chemical fertilizers and pesticides to surface and groundwater, and improper treatment of human and animal wastes has caused serious environmental and social problems throughout the world. Often engineers have attempted to solve these problems using established chemical and physical methods. However, they have usually found that such problems cannot be solved without using microbial methods and technologies in coordination with agricultural production (Reganold et al., 1990; Parr and Hornick, l992a).
For many years, soil microbiologists and microbial ecologists have tended to differentiate soil microorganisms as beneficial or harmful according to their functions and how they affect soil quality, plant growth and yield, and plant health. As shown in Table 1, beneficial microorganisms are those that can fix atmospheric nitrogen, decompose organic wastes and residues, detoxify pesticides, suppress plant diseases and soil-borne pathogens, enhance nutrient cycling, and produce bioactive compounds such as vitamins, hormones and enzymes that stimulate plant growth. Harmful microorganisms are those that can induce plant diseases, stimulate soil-borne pathogens, immobilize nutrients, and produce toxic and putrescent substances that adversely affect plant growth and health.
A more specific classification of beneficial microorganisms has been suggested by Higa (1991; 1994; 1995) which he refers to as "Effective Microorganisms®" or EM®. This report presents some new perspectives on the role and application of beneficial microorganism, including EM, as microbial inoculants for shifting the soil microbiological equilibrium in ways that can improve soil quality, enhance crop production and protection, conserve natural resources, and ultimately create a more sustainable agriculture and environment. The report also discusses strategies on how beneficial microorganisms, including EM, can be more effective after inoculation into soils.
THE CONCEPT OF EFFECTIVE MICROORGANISMS®: THEIR ROLE AND APPLICATION
The concept of Effective Microorganisms® (EM®) was developed by Professor Teruo Higa, University of the Ryukyus, Okinawa, Japan (Higa, 1991; Higa and Wididana, 1991a). EM® consists of mixed cultures of beneficial an naturally occurring microorganisms that can be applied as inoculants to increase the microbial diversity of soils and plant. Research has shown that the inoculation of EM® cultures to the soil/plant ecosystem can improve soil quality, soil health, and the growth, yield, and quality of crops. EM® contains selected species of microorganisms including predominant populations of lactic acid bacteria and yeasts and smaller numbers of photosynthetic bacteria, actinomycetes and other types of organisms. All of these are mutually compatible with one another and can coexist in liquid culture.
EM® is not a substitute for other management practices. It is, however, an added dimension for optimizing our best soil and crop management practices such as crop rotations, use of organic amendments, conservation tillage, crop residue recycling, and biocontrol of pests. If used properly, EM® can significantly enhance the beneficial effects of these practices (Higa and Wididana, 1991b).
Throughout the discussion which follows, we will use the term "beneficial microorganisms" in a general way to designate a large group of often unknown or ill defined microorganisms that interact favorably in soils and with plants to render beneficial effects which are sometimes difficult to predict. We use the term "Effective Microorganisms" or EM® to denote specific mixed cultures of known, beneficial microorganisms that are being used effectively as microbial inoculants.
UTILIZATION OF BENEFICIAL MICROORGANISMS IN AGRICULTURE
What Constitutes an Ideal Agricultural System?
Conceptual design is important in developing new technologies for utilizing beneficial and Effective Microorganisms® for a more sustainable agriculture and environment. The basis of a conceptual design is simply to first conceive an ideal or model and then to devise a strategy and method for achieving the reality. However it is necessary to carefully coordinate the materials, the environment, and the technologies constituting the method. Moreover one should adopt a philosophical attitude in applying microbial technologies to agricultural production and conservation systems.
There are many opinions on what an ideal agricultural system is. Many would agree that such an idealized system should produce food on a long-term sustainable basis. Many would also insist that it should maintain and improve human health, be economically and spiritually beneficial to both producers and consumers, actively preserve and protect the environment, be self-contained and regenerative, and produce enough food for an increasing world population (Higa, 1991).
Efficient Utilization and Recycling of Energy
Agricultural production begins with the process of photosynthesis by green plants which requires solar energy, water, and carbon dioxide. It occurs through the plants ability to utilize solar energy in "fixing" atmospheric carbon into carbohydrates. The energy obtained is used for further biosynthesis in the plant, including essential amino acids and proteins. The materials used for agricultural production are abundantly available with little initial cost. However, when it is observed as an economic activity, the fixation of carbon by photosynthesis has an extremely low efficiency mainly because of the low utilization rate of solar energy by green plants. Therefore, an integrated approach is needed to increase the level of solar energy utilization by plants so that greater amounts of atmospheric carbon can be converted into useful substrates (Higa and Wididana, 1991a).
Although the potential utilization rate of solar energy by plants has been estimated theoretically at between 10 and 20%, the actual utilization rate is less than 1%. Even the utilization rate of C4 plants, such as sugar cane whose photosynthetic efficiency is very high, barely exceeds 6 or 7% during the maximum growth period. The utilization rate is normally less than 3% even for optimum crop yields.
Past studies have shown that photosynthetic efficiency of the chloroplasts of host crop plants cannot be increased much further; this means that their biomass production has reached a maximum level. Therefore, the best opportunity for increasing biomass production is to somehow utilize the visible light, which chloroplasts cannot presently use, and the infrared radiation; together, these comprise about 80% of the total solar energy. Also, we must explore ways of recycling organic energy contained in plant and animal residues through direct utilization of organic molecules by plants (Higa and Wididana, 1991a).
Thus, it is difficult to exceed the existing limits of crop production unless the efficiency of utilizing solar energy is increased, and the energy contained in existing organic molecules (amino acids, peptides and carbohydrates) is utilized either directly or indirectly by the plant. This approach could help to solve the problems of environmental pollution and degradation caused by the misuse and excessive application of chemical fertilizers and pesticides to soils. Therefore, new technologies that can enhance the economic-viability of farming systems with little or no use of chemical fertilizers and pesticides are urgently needed and should be a high priority of agricultural research both now and in the immediate future (National Academy of Sciences, 1989; 1993).
Preservation of Natural Resources and the Environment
The excessive erosion of topsoil from farmland caused by intensive tillage and row-crop production has caused extensive soil degradation and also contributed to the pollution of both surface and groundwater. Organic wastes from animal production, agricultural and marine processing industries, and municipal wastes (i.e., sewage and garbage), have become major sources of environmental pollution in both developed and developing countries. Furthermore, the production of methane from paddy fields and ruminant animals and of carbon dioxide from the burning of fossil fuels, land clearing and organic matter decomposition have been linked to global warming as "greenhouse gases" (Parr and Hornick, 1992b).
Chemical-based, conventional systems of agricultural production have created many sources of pollution that, either directly or indirectly, can contribute to degradation of the environment and destruction of our natural resource base. This situation would change significantly if these pollutants could be utilized in agricultural production as sources of energy.
Therefore, it is necessary that future agricultural technologies be compatible with the global ecosystem and with solutions to such problems in areas different from those of conventional agricultural technologies. An area that appears to hold the greatest promise for technological advances in crop production, crop protection, and natural resource conservation is that of beneficial and Effective Microorganisms applied as soil, plant and environmental inoculants (Higa, 1995).
Beneficial and Effective Microorganisms® for a Sustainable Agriculture Towards Agriculture Without Chemicals and With Optimum Yields of High Quality Crops.
Agriculture in a broad sense, is not an enterprise which leaves everything to nature without intervention. Rather it is a human activity in which the farmer attempts to integrate certain agroecological factors and production inputs for optimum crop and livestock production. Thus, it is reasonable to assume that farmers should be interested in ways and means of controlling beneficial soil microorganisms as an important component of the agricultural environment. Nevertheless, this idea has often been rejected by naturalists and proponents of nature farming and organic agriculture. They argue that beneficial soil microorganisms will increase naturally when organic amendments are applied to soils as carbon, energy and nutrient sources. This indeed may be true where an abundance of organic materials are readily available for recycling which often occurs in small-scale farming. However, in most cases, soil microorganisms, beneficial or harmful, have often been controlled advantageously when crops in various agroecological zones are grown and cultivated in proper sequence (i.e., crop rotations) and without the use of pesticides. This would explain why scientists have long been interested in the use of beneficial microorganisms as soil and plant inoculants to shift the microbiological equilibrium in a way that enhances soil quality and the yield and quality of crops (Higa and Wididana, 1991b; Higa, 1994:1995).
Most would agree that a basic rule of agriculture is to ensure that specific crops are grown according to their agroclimatic and agroecological requirements. However, in many cases the agricultural economy is based on market forces that demand a stable supply of food, and thus, it becomes necessary to use farmland to its full productive potential throughout the year.
The purpose of crop breeding is to improve crop production, crop protection, and crop quality. Improved crop cultivars along with improved cultural and management practices have made it possible to grow a wide variety of agricultural and horticultural crops in areas where it once would not have been culturally or economically feasible. The cultivation of these crops in such diverse environments has contributed significantly to a stable food supply in many countries. However, it is somewhat ironic that new crop cultures are almost never selected with consideration of their nutritional quality or bioavailability after ingestion (Hornick, 1992).
As will be discussed later, crop growth and development are closely related to the nature of the soil microflora, especially those in close proximity to plant roots, i.e., the rhizosphere. Thus, it will be difficult to overcome the limitations of conventional agricultural technologies without controlling soil microorganisms. This particular tenet is further reinforced because the evolution of most forms of life on earth and their environments are sustained by microorganisms. Most biological activities are influenced by the state of these invisible, minuscule units of life. Therefore, to significantly increase food production, it is essential to develop crop cultivars with improved genetic capabilities (i.e., greater yield potential, disease resistance, and nutritional quality) and with a higher level of environmental competitiveness, particularly under stress conditions (i.e., low rainfall, high temperatures, nutrient deficiencies, and aggressive weed growth). To enhance the concept of controlling and utilizing beneficial microorganisms for crop production and protection, one must harmoniously integrate the essential components for plant growth and yield including light (intensity, photoperiodicity and quality), carbon dioxide, water, nutrients (organic-inorganic) soil type, and the soil microflora. Because of these vital interrelationships, it is possible to envision a new technology and a more energy-efficient system of biological production.
Low agricultural production efficiency is closely related to a poor coordination of energy conversion which, in turn, is influenced by crop physiological factors, the environment, and other biological factors including soil microorganisms. The soil and rhizosphere microflora can accelerate the growth of plants and enhance their resistance to disease and harmful insects by producing bioactive substances. These microorganisms maintain the growth environment of plants, and may have secondary effects on crop quality. A wide range of results are possible depending on their predominance and activities at any one time. Nevertheless, there is a growing consensus that it is possible to attain maximum economic crop yields of high quality, at higher net returns, without the application of chemical fertilizers and pesticides. Until recently, this was not thought to be a very likely possibility using conventional agricultural methods. However, it is important to recognize that the best soil and crop management practices to achieve a more sustainable agriculture will also enhance the growth, numbers and activities of beneficial soil microorganisms that, in turn, can improve the growth, yield and quality of crops (National Academy of Sciences, 1989; Hornick, 1992; Parr et al., 1992).
CONTROLLING THE SOIL MICROFLORA: PRINCIPLES AND STRATEGIES
Principles of Natural Ecosystems and the Application of Beneficial and Effective Microorganisms®
The misuse and excessive use of chemical fertilizers and pesticides have often adversely affected the environment and created many a) food safety and quality and b) human and animal health problems. Consequently, there has been a growing interest in nature farming and organic agriculture by consumers and environmentalists as possible alternatives to chemical-based, conventional agriculture.
Agricultural systems which conform to the principles of natural ecosystems are now receiving a great deal of attention in both developed and developing countries. A number of books and journals have recently been published which deal with many aspects of natural farming systems. New concepts such as alternative agriculture, sustainable agriculture, soil quality, integrated pest management, integrated nutrient management and even beneficial microorganisms are being explored by the agricultural research establishment (National Academy of Sciences, 1989; Reganold et al., 1990; Parr et al., 1992). Although these concepts and associated methodologies hold considerable promise, they also have limitations. For example, the main limitation in using microbial inoculants is the problem of reproducibility and lack of consistent results.
Unfortunately certain microbial cultures have been promoted by their suppliers as being effective for controlling a wide range of soil-borne plant diseases when in fact they were effective only on specific pathogens under very specific conditions. Some suppliers have suggested that their particular microbial inoculant is akin to a pesticide that would suppress the general soil microbial population while increasing the population of a specific beneficial microorganism. Nevertheless, most of the claims for these single culture microbial inoculants are greatly exaggerated and have not proven to be effective under field conditions. One might speculate that if all of the microbial cultures and inoculants that are available as marketed products were used some degree of success might be achieved because of the increased diversity of the soil microflora and stability that is associated with mixed cultures. While this, of course, is a hypothetical example, the fact remains that there is a greater likelihood of controlling the soil microflora by introducing mixed, compatible cultures rather than single pure cultures (Higa, 1991).
Even so, the use of mixed cultures in this approach has been criticized because it is difficult to demonstrate conclusively which microorganisms are responsible for the observed effects, how the introduced microorganisms interact with the indigenous species, and how these new associations affect the soil/plant environment. Thus, the use of mixed cultures of beneficial microorganisms as soil inoculants to enhance the growth, health, yield, and quality of crops has not gained widespread acceptance by the agricultural research establishment because conclusive scientific proof is often lacking.
The use of mixed cultures of beneficial microorganisms as soil inoculants is based on the principles of natural ecosystems which are sustained by their constituents; that is, by the quality and quantity of their inhabitants and specific ecological parameters, i.e., the greater the diversity and number of the inhabitants, the higher the order of their interaction and the more stable the ecosystem. The mixed culture approach is simply an effort to apply these principles to natural systems such as agricultural soils, and to shift the microbiological equilibrium in favor of increased plant growth, production and protection (Higa, 1991; 1994;Parr et al., 1994).
It is important to recognize that soils can vary tremendously as to their types and numbers of microorganisms. These can be both beneficial and harmful to plants and often the predominance of either one depends on the cultural and management practices that are applied. It should also be emphasized that most fertile and productive soils have a high content of organic matter and, generally, have large, populations of highly diverse microorganisms (i.e., both species and genetic diversity). Such soils will also usually have a wide ratio of beneficial to harmful microorganisms (Higa and Wididana, 1991b).
Controlling the Soil Microflora for Optimum Crop Production and Protection
The idea of controlling and manipulating the soil microflora through the use of inoculants, organic amendments, and cultural and management practices to create a more favorable soil microbiological environment for optimum crop production and protection is not new. For almost a century, microbiologists have known that organic wastes and residues, including animal manures, crop residues, green manures, municipal wastes (both raw and composted), contain their own indigenous populations of microorganisms often with broad physiological capabilities.
It is also known that when such organic wastes and residues are applied to soils many of these introduced microorganisms can function as biocontrol agents by controlling or suppressing soil-borne plant pathogens through their competitive and antagonistic activities. While this has been the theoretical basis for controlling the soil microflora, in actual practice the results have been unpredictable and inconsistent, and the role of specific microorganisms has not been well-defined.
For many years microbiologists have tried to culture beneficial microorganisms for use as soil inoculants to overcome the harmful effects of phytopathogenic organisms, including bacteria, fungi and nematodes. Such attempts have usually involved single applications of pure cultures of microorganisms which have been largely unsuccessful for several reasons. First, it is necessary to thoroughly understand the individual growth and survival characteristics of each particular beneficial microorganism, including their nutritional and environmental requirements. Second, we must understand their ecological relationships and interactions with other microorganisms, including their ability to coexist in mixed cultures and after application to soils (Higa, 1991; 1994).
There are other problems and constraints that have been major obstacles to controlling the microflora of agricultural soils. First and foremost is the large number of types of microorganisms that are present at any one time, their wide range of physiological capabilities, and the dramatic fluctuations in their populations that can result from man’s cultural and management practices applied to a particular farming system. The diversity of the total soil microflora depends on the nature of the soil environment and those factors which affect the growth and activity of each individual organism including temperature, light, aeration, nutrients, organic matter, pH and water. While there are many microorganisms that respond positively to these factors, or a combination thereof, there are many that do not. Microbiologists have actually studied relatively few of the microorganisms that exist in most agricultural soil, mainly because we don't know how to culture them; i.e., we know very little about their growth, nutritional, and ecological requirements.
The "diversity" and "population" factors associated with the soil microflora have discouraged scientists from conducting research to develop control strategies. Many believe that, even when beneficial microorganisms are cultured and inoculated into soils, their number is relatively small compared with the indigenous soil inhabitants, and they would likely be rapidly overwhelmed by the established soil microflora. Consequently, many would argue that even if the application of beneficial microorganisms is successful under limited conditions (e.g., in the laboratory) it would be virtually impossible to achieve the same success under actual field conditions. Such thinking still exists today, and serves as a principle constraint to the concept of controlling the soil microflora (Higa, 1994).
It is noteworthy that most of the microorganisms encountered in any particular soil are harmless to plants with only a relatively few that function as plant pathogens or potential pathogens. Harmful microorganisms become dominant if conditions develop that are favorable to their growth, activity and reproduction. Under such conditions, soilborne pathogens (e.g., fungal pathogens) can rapidly increase their populations with devastating effects on the crop. If these conditions change, the pathogen population declines just as rapidly to its original state. Conventional farming systems that tend toward the consecutive planting of the same crop (i.e., monoculture) necessitate the heavy use of chemical fertilizers and pesticides. This, in turn, generally increases the probability that harmful, disease-producing, plant pathogenic microorganisms will become more dominant in agricultural soils (Higa, 1991; 1994; Parr and Hornick, 1994).
Chemical-based conventional farming methods are not unlike symptomatic therapy. Examples of this are applying fertilizers when crops show symptoms of nutrient deficiencies, and applying pesticides whenever crops are attacked by insects and diseases. In efforts to control the soil microflora some scientists feel that the introduction of beneficial microorganisms should follow a symptomatic approach. However, we do not agree. The actual soil conditions that prevail at any point in time may be most unfavorable to the growth and establishment of laboratory-cultured, beneficial microorganisms. To facilitate their establishment, it may require that the farmer make certain changes in his cultural and management practices to induce conditions that will (a) allow the growth and survival of the inoculated microorganisms and (b) suppress the growth and activity of the indigenous plant pathogenic microorganisms (Higa, 1994; Parr et al., 1994).
An example of the importance of controlling the soil microflora and how certain cultural and management practices can facilitate such control is useful here. Vegetable cultivars are often selected on their ability to grow and produce over a wide range of temperatures. Under cool, temperate conditions there are generally few pest and disease problems. However, with the onset of hot weather, there is a concomitant increase in the incidence of diseases and insects making it rather difficult to obtain acceptable yields without applying pesticides. With higher temperatures, the total soil microbial population increases as does certain plant pathogens such as Fusarium, which is one of the main putrefactive, fungal pathogens in soil. The incidence and destructive activity of this pathogen can be greatly minimized by adopting reduced tillage methods and by shading techniques to keep the soil cool during hot weather. Another approach is to inoculate the soil with beneficial, antagonistic, antibiotic-producing microorganisms such as actinomycetes and certain fungi (Higa and Wididana, 1991a; 1991b).
Application of Beneficial and Effective Microorganisms®: A New Dimension
Many microbiologists believe that the total number of soil microorganisms can be increased by applying organic amendments to the soil. This is generally true because most soil microorganisms are heterotrophic, i.e., they require complex organic molecules of carbon and nitrogen for metabolism and biosynthesis. Whether the regular addition of organic wastes and residues will greatly increase the number of beneficial soil microorganisms in a short period of time is questionable. However, we do know that heavy applications of organic materials, such as seaweed, fish meal, and chitin from crushed crab shells, not only helps to balance the micronutrient content of a soil but also increases the population of beneficial antibiotic-producing actinomycetes. This changes the soil to a disease-suppressive condition within a relatively short period.
The probability that a particular beneficial microorganism will become predominant, even with organic farming or nature farming methods, will depend on the ecosystem and environmental conditions. It can take several hundred years for various species of higher and lower plants to interact and develop into a definable and stable ecosystem. Even if the population of a specific microorganism is increased through cultural and management practices, whether it will be beneficial to plants is another question. Thus, the likelihood of a beneficial, plant-associated microorganism becoming predominant under conservation-based farming systems is virtually impossible to predict. Moreover, it is very unlikely that the population of useful anaerobic microorganisms, which usually comprise only a small part of the soil microflora, would increase significantly even under natural farming conditions.
This information then emphasizes the need to develop methods for isolating and selecting different microorganisms for their beneficial effects on soils and plants. The ultimate goal is to select microorganisms that are physiologically and ecologically compatible with each other and that can be introduced as mixed cultures into soil where their beneficial effects can be realized (Higa, 1991; 1994; 1995).
Application of Beneficial and Effective Microorganisms®: Fundamental Considerations
Microorganisms are utilized in agriculture for various purposes; as important components of organic amendments and composts, as legume inoculants for biological nitrogen fixation as a means of suppressing insects and plant diseases to improve crop quality and yields, and for reduction of labor. All of these are closely related to each other. An important consideration in the application of beneficial microorganisms to soils is the enhancement of their synergistic effects. This is difficult to accomplish if these microorganisms are applied to achieve symptomatic therapy, as in the case of chemical fertilizers and pesticides (Higa, 1991; 1994).
If cultures of beneficial microorganisms are to be effective after inoculation into soil, it is important that their initial populations be at a certain critical threshold level. This helps to ensure that the amount of bioactive substances produced by them will be sufficient to achieve the desired positive effects on crop production and/or crop protection. If these conditions are not met, the introduced microorganisms, no matter how useful they are, will have little if any effect. At present, there are no chemical tests that can predict the probability of a particular soil-inoculated microorganism to achieve a desired result. The most reliable approach is to inoculate the beneficial microorganism into soil as part of a mixed culture, and at a sufficiently high inoculum density to maximize the probability of its adaptation to environmental and ecological conditions (Higa and Wididana, 1991b; Parr et al., 1994).
The application of beneficial microorganisms to soil can help to define the structure and establishment of natural ecosystems. The greater the diversity of the cultivated plants that are grown and the more chemically complex the biomass, the greater the diversity of the soil microflora as to their types, numbers and activities. The application of a wide range of different organic amendments to soils can also help to ensure a greater microbial diversity. For example, combinations of various crop residues, animal manures, green manures, and municipal wastes applied periodically to soil will provide a higher level of microbial diversity than when only one of these materials is applied. The reason for this is that each of these organic materials has its own unique indigenous microflora which can greatly affect the resident soil microflora after they are applied, at least for a limited period.
CLASSIFICATION OF SOILS BASED ON THEIR MICROBIOLOGICAL PROPERTIES
Most soils are classified on the basis of their chemical and physical properties; little has been done to classify soils according to their physicochemical and microbiological properties. The reason for this is that a soil's chemical and physical properties are more readily defined and measured than their microbiological properties. Improved soil quality is usually characterized by increased infiltration; aeration, aggregation and organic matter content and by decreased bulk density, compaction, erosion and crusting. While these are important indicators of potential soil productivity, we must give more attention to soil biological properties because of their important relationship (though poorly understood) to crop production, plant and animal health, environmental quality, and food safety and quality. Research is needed to identify and quantify reliable and predictable biological/ecological indicators of soil quality. Possible indicators might include total species diversity or genetic diversity of beneficial soil microorganisms as well as insects and animals (Reganold et al., 1990; Parr et al., 1992).
The basic concept here is not to classify soils for the study of microorganisms but for farmers to be able to control the soil microflora so that biologically-mediated processes can improve the growth, yield, and quality of crops as well as the tilth, fertility, and productivity of soils. The ultimate objective is to reduce the need for chemical fertilizers and pesticides (National Academy of Sciences, 1989; 1993).
Functions of Microorganisms: Putrefaction, Fermentation, and Synthesis
Soil microorganisms can be classified into decomposer and synthetic microorganisms. The decomposer microorganisms are subdivided into groups that perform oxidative and fermentative decomposition. The fermentative group is further divided into useful fermentation (simply called fermentation) and harmful fermentation (called putrefaction). The synthetic microorganisms can be sub-divided into groups having the physiological abilities to fix atmospheric nitrogen into amino acids and/or carbon dioxide into simple organic molecules through photosynthesis. Figure 1 (adapted from Higa) is a simplified flow chart of organic matter transformations by soil microorganisms that can lead to the development of disease-inducing, disease suppressive, zymogenic, or synthetic soils.
Fermentation is an anaerobic process by which facultative microorganisms (e.g., yeasts) transform complex organic molecules (e.g., carbohydrates) into simple organic compounds that often can be absorbed directly by plants. Fermentation yields a relatively small amount of energy compared with aerobic decomposition of the same substrate by the same group of microorganisms. Aerobic decomposition results in complete oxidation of a substrate and the release of large amounts of energy, gas, and heat with carbon dioxide and water as the end products. Putrefaction is the process by which facultative heterotrophic microorganisms decompose proteins anaerobically, yielding malodorous incompletely oxidized, metabolites (e.g., ammonia, mercaptans and indole) that are often toxic to plants and animals.
The term "synthesis" as used here refers to the biosynthetic capacity of certain microorganisms to derive metabolic energy by "fixing" atmospheric nitrogen and/or carbon dioxide. In this context we refer to these as "synthetic" microorganisms, and if they should become a predominant part of the soil microflora, then the soil would be termed a "synthetic" soil.
Nitrogen-fixing microorganisms are highly diverse, ranging from "free-living" autotrophic bacteria of the genus Azotobacter to symbiotic, heterotrophic bacteria of the genus Rhizobium, and blue-green algae (now mainly classified as blue-green bacteria), all of which function aerobically. Photosynthetic microorganisms fix atmospheric carbon dioxide in a manner similar to that of green plants. They are also highly diverse, ranging from blue-green algae to green algae that perform complete photosynthesis aerobically to photosynthetic bacteria which perform incomplete photosynthesis anaerobically.
Relationships Between Putrefaction, Fermentation, and Synthesis
The processes of putrefaction, fermentation, and synthesis proceed simultaneously according to the appropriate types and numbers of microorganisms that are present in the soil. The impact on soil quality attributes and related soil properties is determined by the dominant process. The production of organic substances by microorganisms results from the intake of positive ions, while decomposition serves to release these positive ions. Hydrogen ions play a pivotal role in these processes. A problem occurs when hydrogen ions do not recombine with oxygen to form water but are utilized to produce methane, hydrogen sulfide, ammonia, mercaptans and other highly reduced putrefactive substances most of which are toxic to plants and produce malodors. If a soil is able to absorb the excess hydrogen ions during periods of soil anaerobiosis and if synthetic microorganisms such as photosynthetic bacteria are present, they will utilize these putrefactive substances and produce useful substrates from them which helps to maintain a healthy and productive soil.
The photosynthetic bacteria, which perform incomplete photosynthesis anaerobically, are highly desirable, beneficial soil microorganisms because they are able to detoxify soils by transforming reduced, putrefactive substances such as hydrogen sulfide into useful substrates. This helps to ensure efficient utilization of organic matter and to improve soil fertility. Photosynthesis involves the photo-catalyzed splitting of water which yields molecular oxygen as a by-product. Thus, these microorganisms help to provide a vital source of oxygen to plant roots.
Reduced compounds such as methane and hydrogen sulfide are often produced when organic materials are decomposed under anaerobic conditions. These compounds are toxic and can greatly suppress the activities of nitrogen-fixing microorganisms. However, if synthetic microorganisms, such as photosynthetic bacteria that utilize reduced substances, are present in the soil, oxygen deficiencies are not likely to occur. Thus, nitrogen-fixing microorganisms, coexisting in the soil with photosynthetic bacteria, can function effectively in fixing atmospheric nitrogen even under anaerobic conditions. Photosynthetic bacteria not only perform photosynthesis but can also fix-nitrogen. Moreover, it has been shown that, when they coexist, in soil with species of Azotobacter, their ability to fix nitrogen is enhanced. This then is an example of a synthetic soil. It also suggests that by recognizing the role, function, and mutual compatibility of these two bacteria and utilizing them effectively to their full potential, soils can be induced to a greater synthetic capacity. Perhaps the most effective synthetic soil system results from the enhancement of zymogenic and synthetic microorganisms; this allows fermentation to become dominant over putrefaction and useful synthetic processes to proceed.
Classification of Soils Based on the Functions of Microorganisms As discussed earlier (Figure 1), soils can be characterized according to their indigenous microflora which perform putrefactive, fermentative, synthetic and zymogenic reactions and processes. In most soils, these three functions are going on simultaneously with the rate and extent of each determined by the types and numbers of associated microorganisms that are actively involved at any one time. A simple diagram showing a classification of soils based on the activities and functions of their predominant microorganisms is presented in Fig. 2.
Disease-Inducing Soils
In this type of soil, plant pathogenic microorganisms such as Fusarium fungi can comprise 5 to 20 percent of the total microflora if fresh organic matter with a high nitrogen content is applied to such a soil, incompletely oxidized products can arise that are malodorous and toxic to growing plants. Such soils tend to cause frequent infestations of disease organisms and harmful insects. Thus, the application of fresh organic matter to these soils is often harmful to crops. Probably more than 90 percent of the agricultural land devoted to crop production worldwide can be classified as having disease-inducing soil. Such soils generally have poor physical properties, and large amounts of energy are lost as "greenhouse" gases, particularly in the case of rice fields. Plant nutrients are also subject to immobilization into unavailable forms.
Disease-Suppressive Soils
The microflora of disease-suppressive soils is usually dominated by antagonistic microorganisms that produce copious amounts of antibiotics. These include fungi of the genera Penicillium, Trichoderma, and Aspergillus, and actinomycetes of the genus Streptomyces. The antibiotics they produce can have biostatic and biocidal effects on soil-borne plant pathogens, including Fusarium which would have an incidence in these soils of less than 5 percent. Crops planted in these soils are rarely affected by diseases or insect pests. Even if fresh organic matter with a high nitrogen content is applied, the production of putrescent substances is very low and the soil has a pleasant earthy odor after the organic matter is decomposed. These soils generally have excellent physical properties; for example, they readily, form water-stable aggregates and they are well aerated, and have a high permeability to both air and water. Crop yields in the disease suppressive soils are often slightly lower than those in synthetic soils. Highly acceptable crop yields are obtained whenever a soil has a predominance of both disease-suppressive and synthetic microorganisms.
Zymogenic Soils
These soils are dominated by a microflora that can perform useful kinds of fermentations, i.e., the breakdown of complex organic molecules into simple organic substances and inorganic materials. The organisms can be either obligate or facultative anaerobes. Such fermentation-producing microorganisms often comprise the microflora of various organic materials, i.e., crop residues, animal manures, green manures and municipal wastes including composts. After these amendments are applied to the soil, their number and fermentative activities can increase dramatically and overwhelm the indigenous soil microflora for an indefinite period. While these microorganisms remain predominant, the soil can be classified as a zymogenic soil which is generally characterized by a) pleasant, fermentative odors especially after tillage, b) favorable soil physical properties (e.g., Increased aggregate stability, permeability, aeration and decreased resistance to tillage c) large amounts of inorganic nutrients, amino acids, carbohydrates, vitamins and other bioactive substances which can directly or indirectly enhance the growth, yield and quality of crops, d) low occupancy of Fusarium fungi which is usually less than 5 percent, and e) low production of greenhouse gases (e.g., methane, ammonia, and carbon dioxide) from croplands, even where flooded rice is grown.
Synthetic Soils
These soils contain significant populations of microorganisms which are able to fix atmospheric nitrogen and carbon dioxide into complex molecules such as amino acids, proteins and carbohydrates. Such microorganisms include photosynthetic bacteria which perform incomplete photosynthesis anaerobically, certain Phycomycetes (fungi that resemble algae), and both green algae and blue–green algae which function aerobically. All of these are photosynthetic organisms that fix atmospheric nitrogen. If the water content of these soils is stable, their fertility can be largely maintained by regular additions of only small amounts of organic materials. These soils have a low Fusarium occupancy and they are often of the disease-suppressive type. The production of gases from fields where synthetic soils are present is minimal, even for flooded rice.
This is a somewhat simplistic classification of soils based on the functions of their predominant types of microorganisms, and whether they are potentially beneficial or harmful to the growth and yield of crops. While these different types of soils are described here in a rather idealized manner, the fact is that in nature they are not always clearly defined because they often tend to have some of the same characteristics.
Nevertheless, research has shown that a disease-inducing soil can be transformed into disease-suppressing, zymogenic and synthetic soils by inoculating the problem soil with mixed cultures of Effective Microorganisms® (Higa, 1991; 1994; Parr et al., 1994). Thus it is somewhat obvious that the most desirable agricultural soil for optimum growth, production, protection, and quality of crops would be the composite soil indicated in Fig. 2, i.e., a soil that is highly zymogenic and synthetic, and has an established disease suppressive capacity. This then is the principle reason for seeking ways and means of controlling the microflora of agricultural soils.
SUMMARY AND CONCLUSIONS
Controlling the soil microflora to enhance the predominance of beneficial and Effective Microorganisms® can help to improve and maintain the soil chemical and physical properties. The proper and regular addition of organic amendments are often an important part of any strategy to exercise such control.
Previous efforts to significantly change the indigenous microflora of a soil by introducing single cultures of extrinsic microorganisms have largely been unsuccessful. Even when a beneficial microorganism is isolated from a soil, cultured in the laboratory, and reinoculated into the same soil at a very high population, it is immediately subject to competitive and antagonistic effects from the indigenous soil microflora and its numbers soon decline. Thus, the probability of shifting the "microbiological equilibrium" of a soil and controlling it to favor the growth, yield and health of crops is much greater if mixed cultures of beneficial and Effective Microorganisms® are introduced that are physiologically and ecologically compatible with one another. When these mixed cultures become established their individual beneficial effects are often magnified in a synergistic manner.
Actually, a disease-suppressive microflora can be developed rather easily by selecting and culturing certain types of gram-positive bacteria that produce antibiotics and have a wide range of specific functions and capabilities; these organisms include facultative anaerobes, obligate aerobes, acidophilic and alkalophilic microbes. These microorganisms can be grown to high populations in a medium consisting of rice bran, oil cake and fish meal and then applied to soil along with well-cured compost that also has a large stable population of beneficial microorganisms, especially facultative anaerobic bacteria. A soil can be readily transformed into a zymogenic/synthetic soil with disease-suppressive potential if mixed cultures of Effective Microorganisms® with the ability to transmit these properties are applied to that soil.
The desired effects from applying cultured beneficial and effective microorganisms to soils can be somewhat variable, at least initially. In some soils, a single application (i.e., inoculation) may be enough to produce the expected results, while for other soils even repeated applications may appear to be ineffective. The reason for this is that in some soils it takes longer for the introduced microorganisms to adapt to a new set of ecological and environmental conditions and to become well-established as a stable, effective and predominant part of the indigenous soil microflora. The important consideration here is the careful selection of a mixed culture of compatible, Effective Microorganisms® properly cultured and provided with acceptable organic substrates. Assuming that repeated applications are made at regular intervals during the first cropping season, there is a very high probability that the desired results will be achieved.
There are no meaningful or reliable tests for monitoring the establishment of mixed cultures of beneficial andEffective Microorganisms® after application to a soil. The desired effects appear only after they are established and become dominant, and remain stable and active in the soil. The inoculum densities of the mixed cultures and the frequency of application serve only as guidelines to enhance the probability of early establishment.
Repeated applications, especially during the first cropping season, can markedly facilitate early establishment of the introduced Effective Microorganisms®. Once the "new" microflora is established and stabilized, the desired effects will continue indefinitely and no further applications are necessary unless organic amendments cease to be applied, or the soil is subjected to severe drought or flooding. Finally, it is far more likely that the microflora of a soil can be controlled through the application of mixed cultures of selected beneficial and Effective Microorganisms® than by the use of single or pure cultures. If the microorganisms comprising the mixed culture can coexist and are physiologically compatible and mutually complementary, and if the initial inoculum density is sufficiently high, there is a high probability that these microorganisms will become established in the soil and will be effective as an associative group, whereby such positive interactions would continue. If so, then it is also highly, probable that they will exercise considerable control over the indigenous soil microflora which, in due course, would likely be transformed into or replaced by a "new" soil microflora.
REFERENCES
Higa, T. 1991. Effective microorganisms: A biotechnology for mankind. p.8-14. In J.F. Parr, S.B. Hornick, and C.E. Whitman (ed.) Proceedings of the First International Conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, D.C., USA.
Higa, T. and G.N. Wididana 1991a. The concept and theories of Effective Microorganisms. p. 118-124. In Parr, S.B. Hornick, and C.E. Whitman (ed.) Proceedings of the First International Conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, D.C., USA.
Higa, T. and G.N. Wididana 199lb. Changes In the soil microflora Induced by Effective Microorganisms. p.153-162. In J.F. Parr, S.B. Hornick, and C.E. Whitman (ed.) Proceedings of the First International Conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, D.C., USA.
Higa, T. 1994. Effective Microorganisms: A New Dimension for Nature Farming. p. 20-22. In J.F. Parr, S.B. Hornick, and M.E. Simpson (ed.) Proceedings of the Second International Conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, D.C, USA.
Higa, T. 1995. Effective microorganisms: Their role in Kyusei Nature Farming and sustainable agriculture. In J.F. Parr, S.B. Hornick, and M.E. Simpson (ed.) Proceedings of the Third International Conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, D.C., USA. (In Press).
Hornick, S.B. 1992. Factors affecting the nutritional quality of crops. Amer. J. Alternative Agric. 7:63-68.
National Academy of Sciences. 1989. Alternative Agriculture. Committee on the Role of Alternative Agriculture Farming Methods in Modern Production Agriculture. National Research Council, Board on Agriculture. National Academy Press, Washington, D.C., USA. 448 p.
National Academy of Sciences. 1993. Pesticides in Diets of Infants and Children National Research Council, Board on Agriculture. National Academy Press, Washington, D.C., USA. 373 p.
Parr, J.F. and S.B. Hornick 1992a. Agricultural use of organic amendments: A historical perspective. Amer. J. Alternative Agric. 7:181-189.
Parr, J.F. and S.B. Hornick. 1992b. Utilization of municipal wastes. p.545-559. In F.B. Metting (ed.) Soil Microbial Ecology: Applications in Agriculture and Environmental Management. Marcel Dekker, Inc., New York, USA.
Parr, J.F., R.I. Papendick, S.B. Hornick, and R.E. Meyer. 1992. Soil quality: Attributes and relationship to alternative and sustainable agriculture. Amer. J. Alternative Agric. 7:5-11.
Parr, J.F. and S.B. Hornick. 1994. Assessment of the Third International Conference on Kyusei Nature Farming: Round Table Discussion by USDA Scientists, October 7, 1993. Published by the Nature Farming Research and Development Foundation, Lompoc, California, USA.
Parr, J.F., S.B. Hornick, and D.D. Kaufman. 1994. Use of microbial Inoculants and organic fertilizers in agricultural production. In Proceedings of the International Seminar on the Use of Microbial and Organic Fertilizers in Agricultural Production. Published by the Food and Fertilizer Technology Center, Taipei, Taiwan.
Reganold, J.P., R.I Papendick, and J.F. Parr. 1990. Sustainable Agriculture. Scientific American 262(6): 112-120.
Table 1.
Some Common Functions of Beneficial and Harmful Soil Microorganisms as they Affect Soil Quality, Crop Production, and Plant Health.
Functions of Beneficial Microorganisms
- Fixation of atmospheric nitrogen
- Decomposition of organic wastes and residues
- Suppression of soil-borne pathogens
- Recycling and increased availability of plant nutrients
- Degradation of toxicants including pesticides
- Production of antibiotics and other bioactive compounds
- Production of simple organic molecules for plant uptake
- Complexation of heavy metals to limit plant uptake
- Solubilization of insoluble nutrient sources
- Production of polysaccharides to improve soil aggregation
- Functions of Harmful Microorganisms
- Induction of plant diseases
- Immobilization of plant nutrients
- Inhibition of seed germination
- Inhibition of plant growth and development
- Production of phytotoxic substances
Courtesy: http://www.agriton.nl/higa.html
EM®: A Holistic Technology For Humankind
Abstract
The world today faces a multitude of problems, primarily that of pollution and poisoning. These cause pain to humankind, in terms of physical and mental discomfort. Analysis of reasons to these problems highlight one significant phenomenon. The world is neglecting an important part of our environment–that of microorganisms, primarily due to the fact that these important microbes are not visible to the naked eye.
The loss of microbial activity in our environment leads to many problems. Production of food, the removal of pollutants, development of a healthy environment are all determined by microbial activity.
Thus, the technology of Effective Microorganisms® (EM®) was developed to overcome these problems. The technology was initiated in the 1980's in Japan, and was based on developing sustainable organic food systems. The success achieved in this field - both in terms of crops and livestock, including aquaculture led to its expansion into industries and even health. The latter was based on the development of extracts from solutions of EM®, which have abundant energy, developed through the activity of free radicals. The use of these extracts have now spread to humankind, who use it for maintaining health. Research identifies its use in overcoming nuclear pollution as well. Therefore, this technology can be seen as one which has a holistic role for the future well being of humankind. The presentation highlights the current developments of this technology.
Introduction
One of the biggest problems that humankind face today and has faced throughout history, has been the disposal of wastes. The accumulation of organic wastes develop odors, due to putrefaction, which is unbearable after some time. However, in the early years, humankind used these wastes for a very important purpose. That was to use them as sources of nutrients for plants, which were fed to the people and provided fodder to animals. However, with the advent of time, populations grew, especially in the poorer countries, which caused pressure on land. The availability of wastes was limited and there was a high demand to produce more food from limited land.
This dilemma brought about the use of chemicals to supply the required plant nutrients along with the new varieties that could not produce the potential yields without fertilizers and pesticides to protect them. This was call the green revolution. At that time, this revolution was the best thing that could have happened. Yields of rice and wheat increased dramatically and people all over the world praised those who were responsible - as they were saviors of humankind - as technologies required for feeding the masses , especially the poor peoples, where quantity mattered rather than quality of food or the environment.
Problems of Modern Agriculture
The happiness lasted for over three decades and problems emerged. This is nature we are all aware that a human being - at the time of birth is hailed as someone from heaven. With time, that person reaches the prime of activity around 25-30 years when the pinnacle of life is reached - fast life, great ambitions, marriage and families. Thereafter, the progress is one of slow decline - ailments, financial crises, family problems mount up - but life has to go on. People seek the help of therapists, doctors and psychiatrists; not forgetting the bankers of course - to overcome their problems. With time, humans became machines an the holistic approach to life was lost, especially in the developed world.
This was also seen in agriculture and environment where the excessive use of chemicals destroyed an important part of our environment that we could not see at all; therefore, it was forgotten. This was the microbial life, which sustained the production process by decaying the wastes and providing nutrient rich environments for plant growth and removing organic debris to cleanse the surroundings of humankind. The excessive use of chemicals killed the microfauna and flora causing problems of soil fertility, loss of crops, pest and disease problems and pollution of the environment. These are the problems that we face today.
Kyusei Nature Farming
However, all hope was not lost as there were erudite philosophers, who had theories to overcome this problem. Most of these people looked at one aspect of the problem only. In contrast, there was a very simple but experienced and knowledgeable person named Mokichi Okada in Japan, who foresaw the problems that humankind would face in the future. He was not a soothsayer, but a simple person with great vision. Therefore, he advocated the concepts of Kyusei Nature Farming–the term Kyusei meaning "saving the world".
The method of agriculture advocated by Mokichi Okada has five basic principles:
- The production of food having a high quality for the advancement of human health
- The development of economic and spiritual benefits to the producer and consumer
- The preservation of sustainability and ease of adoption
- The conformation to laws of nature and environmental protection
- The procurement of food for the increasing populations
Therefore, this method of life, which was holistic in its approach, was a sustainable and self contained method of agriculture, which did not depend on chemicals. However, it was capable of bringing economic stability and preserving the environment.
Effective Microorganisms®
The technology of EM®, which was developed by me, was initiated in the 1970's. The objective was to help the ailing agricultural sector to overcome problems of pollution and to help the organic farmers who were producing food and were beset with problems of low yields and quality. Therefore, I developed a mixture of microbes, using the very common species found in all environments as extensively used in the food industry–namely Lactic Acid Bacteria, Photosynthetic Bacteria an Yeasts. It never contained any genetically manipulated species and never will. EM®, which was developed by accident, was seen to be technology that could solve agricultural problems of the world. It is safe, low in cost, and the results in high quality and sustainable results. People in some countries even drink it. It is safe.
The technology, developed by me in the 1970's was expanded through diligent research and was ripened like a very good wine over time. It was blended with the concepts of Kyusei Nature Farming in the early 1980's as those advocating the principles of Mokichi Okada saw that his technology as a means to help them maintain the stability and advance the concepts of their system. The technology was offered to the world in 1989 through the International Conference on Kyusei Nature Farming held in Thailand. At this conference, the scientists from 13 countries formed a network, the Asia Pacific Natural Agriculture Network (APNAN), to test the scientific validity of this technology in their own environments, which were facing the problems of pollution in chemical agriculture and low productivity of organic systems. The technology was further strengthened by the many scientific conferences held from that time–the International Conferences held in Brazil, USA, France in 1991, 1993, and 1995, and again in Thailand last month. All these conferences highlighted the success of the technology in agriculture. Furthermore, the technology was adopted in the management of environmental problems of animal production systems and waste water. These developments gave further strength to this technology, which was originally developed for agriculture. The results were so successful that many countries adopted the technology as national policy (e.g. Pakistan, Myanmar, Vietnam and Indonesia) and very recently the Peoples' Democratic Republic of Korea. Prominent non-government organizations are using this technology in countries such as Brazil, Nepal, Sri Lanka, Belgium, Holland, and South Korea. It is being practiced and studied in over 60 countries in all continents of this world. The technology is spreading - not because I say that it is good, but because they are realizing the benefits of the technology and its holistic nature to overcome problems of production and preservation of food and the environments. Therefore, it is not a toy, but reality as one cannot food all the people all the time–especially scientists, administrators and policy makers of different countries. The technology has been presented at many international fora, especially that of the International Federation of Organic Agriculture Movements (IFOAM) which has supported the last two International Conferences on Kyusei Nature Farming.
At present, the technology is spreading very fast and I am now at times unable to cope up with the demand for it. However, please be assured that we will try our best to help all those who need help. It may take a little time to get the money and dedicated people to carry out this gigantic task.
Mode of Action of EM®
I would now like to draw your attention to the mode of action of EM®. You are all aware that the process of decay of all objects is oxidation. I thought of this very seriously to see if there was a connection between the mode of action of EM® and oxidation. Therefore, research was undertaken and very recently, it was shown that the multitude of benefits of EM® could be attributed to the presence of many antioxidant substances that are developed by EM®. These substances develop the resonance waves required to produce an antioxidative environment, which helps maintain productivity and sustainability.
You may wonder what antioxidative susbstances are found in EM®. Research has shown these to be low molecular polysaccharides, bacteriocins, mineral complexes, which are developed primarily by photosynthetic bacteria and by the low wave resonance stemming from EM®. Therefore, research has shown that photosynthetic bacteria possess natural characteristics of being electrogenic and can be used as biocatalysts. Based on this concept, photosynthetic bacteria are a fundamental ingredient in EM®. The energy produced by EM® can be and has been measured by NMR (Nuclear Magnetic Resonance) and LFA (Life Field Analysis). Therefore, it is real and not some crazy thinking. I do not want to burden you all with the scientific jargon. Therefore, I would like now to move on to speak on some of the more recent advances in EM® to illustrate its holistic nature.
Recent Advances in EM Technology®
Humans have become a burden to nature. The excessive consumerism of modern humankind is polluting this world and its nature, and mother nature is hitting back. This causes the problems. The benefits of EM® can be used successfully and diligently to stop this disaster. EM-1® is used in disposing wastes and making them good organic fertilizers at a very low cost in an effective manner to provide a good wholesome environment to humankind. EM-1® can be used effectively for this purpose. Let us begin with our day to day lives. One of the most important places that generate reusable wastes is our kitchen. Normally these wastes are dumped, thereby becoming urban problems. Sewage and waste water are two others that are problems. However, EM-1® has been used successfully in both instances. In South Korean, the Red Cross of the Pusan City is using EM-1® to make good compost with kitchen wastes, thus promoting organic farming in highrise apartments and surrounding gardens. Wastewater and sewage of the Gushikawa City Library (Okinawa, Japan) is treated with EM® and reused in irrigation and gardening. This is being done in Egypt and South Africa, and also in China. In Thailand, EM-1® is used in the management of city garbage at a site just outside Bangkok in Ladkra Bhan, where 3,000 to 4,000 metric tons of garbage are dumped daily and EM-1® is sprayed three to four times. There are no flies and there is no smell.
In agriculture, one of the biggest pollutants are animal husbandry units–especially swine and poultry. EM® is used to overcome the smell and the management of wastes which is the biggest problem faced by animal producers. We have developed integrated systems where the waste is used in cropping in a very short time, in a successful manner. This is indeed remarkable and the examples are numerous in all parts of the world, including Europe. Research at one of the most prestigious universities in Europe, at Wageningen, clearly highlight this concept. Therefore, you see that EM® is indeed a holistic technology for agriculture of this world to produce high quantities of good quality food in a simple sustainable and safe manner.
Let us now move onto the industries which generate many pollutants–both in solid and liquid form. The use of EM-1® in such instances have proven to be very beneficial. There are examples in China and Vietnam where EM-1® has been very successfully used in cleaning waste water. In a corn starch factory in Nanjing, China has overcome problems of waste water by using EM-1® . The sludge is used as a fertilizer by farmers. Waste water with oil is treated with EM-1® in Brazil and the USA, and the results are very clear that the BOD is reduced making the water clean and safe. EM-1® is also used in the Tivoli Gardens of Copenhagen to clean their lake all these show the benefits of EM-1® .
In terms of solid wastes, EM-1® had the capacity to decompose organic matter such as rubber and in some instances, given the time, biodegradable plastics. Therefore in waste management, EM-1® has a significant role to play for the betterment of humankind.
The world today is alarmed by global warming (now called climate change). It affects our future and also the future of some countries such as the Maldives Island and Bangladesh, which would get inundated with the rise in sea levels. What causes global warming? One of the biggest problems is the methane gas generated by rice fields and also by the use of fossil fuel. Research in Malaysia and China has shown that the application of EM-1® reduced the emission of methane from rice fields. In the same context, the use of EM-1® in factories, where the fumes are passed through ceramics made with EM-1® have a lower content of gasses. Do these examples not show the holistic nature of EM Technology®?
Another area where EM-1® is used is in land development. Desertification is a major problem in all parts of the world. In the developing countries with very high populations this will cause grave dangers. I am happy to inform you that EM-1® is used in overcoming desertification as well. A project initiated by us in collaboration with the China Agricultural University in Beijing has shown that application of EM-1® enhances the process of revegetation of the deserts of inner Mongolia. A United Nations project in Tibet is also pursuing this program and we are in the process of negotiating our help to them.
How does EM-1® achieve these miracles? I assure you that EM-1® is not a miracle. It is not magic. The microbes use these wastes as their feed, this law of ecology where the wastes of human activity are used by the microbes for feed and conversion into useful substances. This is nature and if we live with this fact it will be very easy to understand the action of EM-1®.
Let us now move onto the most recent developments in EM-1®, which again highlight its holistic nature. One of the most disastrous events that took place in recent times is that of the nuclear accidents of Chernobyl in Belarussia. This disaster caused much harm to humans, animals, and the environment. Research undertaken by the Academy of Radiobiology at Minsk in Belarussia have shown that EM-1® helps plants take up greater quantities of nuclear material, thereby reducing pollution. These plants have to be destroyed, but the soil is made safe for future agriculture. Is this not a benefit of EM-1®? Another example is the use of EM-1® in disease control, especially in aquaculture. The shrimp industry in Thailand is one that earns much needed foreign exchange. EM-1® is used widely in this industry to contain disease. Here again one sees the benefits of EM-1®.
The holistic nature of EM-1® is strengthened by the fact that a derivative of EM-1®, termed EM-X®, was developed by me a few years ago. This solution, marketed in many countries, including Japan, is used as a health drink. If one cultures it, you would not see colonies of microbes as it does not contain any. The EM-X® has extracts, the antioxidative substances of EM-1® are extracted and made into a stable liquid solution. This organic product is safe and develops the immunity system of humans - it helps relieve pain and tiredness. All these have been proven and on a more optimistic note, EM-X® has also been tested on AIDS patients in Thailand with very promising results. Recent studies on the use of EM–X® in the motor car industry have shown that this solution increases fuel efficiency and reduces emission of polluting gasses. While the tests are promising, some are already using EM-X® in their cars with good results. This too will lead to the reduction of pollution.
EM-1® acts as a source of energy. The waving resonance theory that I briefly described as the mode of action of EM-1® is one of the energy and this energy, which some call as entropy, is the principal method of action. The process of oxidation and reduction is also one of electron transfer which is again energy. This is the important link–although neither seen nor heard. I also emphasized on aspects that one could see, hear, smell and feel the benefits of EM-1® as we cannot touch, feel or smell energy–we only feel it in our inner beings.
Current Status of KNF
There are two avenues by which EM-1® is made available to peoples of the world. These are through the advocates of Kyuei Nature Farming. First, the International Nature Farming Research Center (INFRC) of Atami Japan, produces EM-1® under my guidance and makes it available virtually cost free to people of the developing world, especially for agriculture. Second, the EM Research Organization (EMRO) of Okinawa principally markets EM-X® on a moderate profit. However, all the profits of the sale of EM-1® go into development of EM Technology®, especially in the developing world. The funds thus generated do not go to one individual, but they go into national projects in the developing countries. For example, we help projects in Myanmar, Bhutan, Laos, Vietnam, Sri Lanka, India, and Bangladesh which are among a few. Funds are used for training people in Thailand, where there is a magnificent farm using EM-1® . We also provide support to countries such as New Zealand, Belgium and France in terms of the technology. The principal feature is that funds generated from developing countries are used. For further development within that country. The funds that are generated in the developed world are used for expansion of activities in the region and also in new regions. This is the case in Africa.
Conclusion
Energy is something that we cannot live without. How do we get energy? The easiest experience is that of light, which is vital for life. EM-1® encompasses both these aspects as EM-1® is also alive and uses living beings. Treat it as you would treat another living being and I assure you that given the conditions for the development and maintenance of populations of these Effective Microorganisms®, they will function to make this world a better place. This is the holistic approach of EM-1®–one of action within the global framework of human activity. It will make this world a better and a sustainable place for all of us and for our future generations.
Keynote Speech from 2nd Medical Conference
As introduced by the former speaker, indeed EM® possesses a very wide diversity of supernatural properties. It remains very difficult to explain these properties from the scientific concepts that we have acquired so far. Conventionally, there is the concept of entropy. Entropy refers to the concept that all substances that posses energy invevitably lose the energy, degenerate, and finally perish leaving pollution behind.This is what is called the law of increase of entropy. However, when EM-1 ® Microbial Inoculant is used, the pollution is transformed to energy, and this energy becomes materialized. By this means, the order of substance is recovered perfectly. Through this process, we can observe the phenomenon of rejuvenation. Since I could not find a term to describe such phenomenon, when I attended the EM ® conference in Africa in 1999, I coined the term "syntropy" as an alternate term to explain the phenomenon of rejuvenation that I just described. I would like you to have an understanding that syntropy is a term that explains the collective phenomenon of rejuvenation.
In the exhibition hall, you will find a house made with EM-1 ® Microbial Inoculant. There you will see exhibition photographs. Among them, when an EM-1 ® Microbial Inoculant sheet was cultured with cancer cells, almost all the cancer cells disappeared, whereas in the case of an ordinary sheet, the whole sheet will be covered with cancer cells. This is also a syntropy phenomenon.
I shall give some examples of the mysterious nature about the syntrophy phenomenon. For example, free radicals that are the major cause of human diseases are produced under various circumstances. The first free radicals produced are superoxides. These superoxides are removed by SOD active enzyme. Subsequent metabolism produces hydrogen peroxide. To eliminate this hydrogen peroxide, enzymes other than SOD active enzymes are needed. When these enzymes are not adequately active, hydroxyl radicals will be produced and become even stronger radicals. Including these pathways, four species of free radicals are produced. Four different enzymes act specifically on these four types of free radicals. Therefore, when we discover an enzyme that removes one type of the free radicals, this enzyme will act on step 1, but it has no effect on step 2 or step 3. An enzyme that is active in step 2 will have no effect on step 1, etc. We thus have this rather fragmented sort of situation. Therefore, when we first studied free radicals, we thought that strengthening SOD alone would do the job, but now we know that is does not work that way.
It is the same for iron. By adding EM-1 ® Microbial Inoculant, or by adding EM-X ® Gold and EM-X® Ceramics, and processing repeated at high temperature, the iron acquires properties like titan.
In August, I was shown a Nissan diesel car that used EM-Z (no longer available) and EM-Z in engine oil and car body, and this car has already ran 370 thousand kilometers. Despite having ran for 370 thousand kilometers, the car has changed into a fantastic car that if you look at it from a slight distance, the car gives the illusion that it is made of total alloy. I have also seen a car with EM-1 ® Microbial Inoculant specification in Taiwan, which also ran 450 thousand kilometers. An ordinary car would have been scrapped after about 100 thousand kilometers. Despite having extended the running life 4-5 times, the function has not deteriorated. There is no need to change any parts at all. Something incredible has taken place.
At the library of Gushikawa City, the toilet water processing and recycling machine has been working for 10 years and none of the parts have been changed. Moreover, the parts immersed in the processing water containing EM-1 ® Microbial Inoculant are shiny as new. It is understandable if the machine has worked 1 year or 2 years, but 10 years have passed and the machine is as good as new.
The same applies to human diseases. For example, when diseases with multiple symptoms such as hypertension and diabetes occur, the cells are swollen and are in a state of increased entropy. By taking EM-X ® Sea Salt, drinking EM-X ® Gold, and wearing clothes treated with EM-X ® Ceramics and using EM-1® Microbial Inoculant in every aspect of your daily life, the disease is gradually cured and one witnesses a phenomenon that the patient becomes so healthy that it is totally unbelievable. Unlike the conventional causal relation (that is, when a patient takes drug A, the response to this drug results in cure of the disease) the mechanism in the case of EM Technology ® is that the preexisting tissue and cell returns to a normal state one by one. In other words, it is a move toward the direction of rejuvenation, that is, stopping the increase of entropy or conversely converting the increased entropy into energy toward the direction of syntropy. If we do not reason this way, we cannot interpret this phenomenon.
We have come to realize that when we drink EM-X ® Gold, all four types of free radicals in the body are eliminated at the same time. The fact that one substance is capable of eliminating all the free radicals goes against conventional knowledge. Apart from the elimination of active oxygen species, we must consider the possibility that other mechanisms such as prevention of generation of active oxygen may act simultaneously.
When one compares EM-1 ® Microbial Inoculant with various enzyme activities that degrade plants and organic substances, EM•1 ® Microbial Inoculant acts at a much faster speed. We know that the enzyme dehydrogenase works at a fantastic speed and degrades harmful substances. In the body, all the harmful substances generated under anaerobic conditions become hydroxyl compounds, but the speed of eliminating the hydrogen also proceeds at a fast speed. Furthermore, the process continues as a chain reaction. This knowledge has been gained through studies in the areas of agriculture and husbandry. EM-X ® Gold also activated all the enzymes in the body. We have begun to understand the mechanisms as follows.
One of the amazing powers of EM-1 ® Microbial Inoculant and EM-X® Gold is the antioxidant effect.
The second is the deionization effect, which is the effect of preventing the acquisition of electrical charges EM-1 ® Microbial Inoculant can cause a net neutral charge in mediums to which it is applied.]. The meaning of carrying electrical charges signifies that the substance is deteriorating, and when it disintegrates it begins to carry electrical charges. Dirt is due to such a phenomenon. For light and heat, when they degrade they become electromagnetic wave-and-static electricity and carry electrical charges. All these reflect the phenomenon that entropy is increased. Applications of EM-1 ® Microbial Inoculant stops this phenomenon of carrying electrical charges. This property is being applied to detergents and energy-saving technology.
When EM-1 ® Microbial Inoculant is used during laundry cleaning, no foam is formed but the dirt is removed. This is because the dirt is attached as a result of oxidized substance carrying electrical charges. Ordinary laundry uses surface active detergent to remove dirt. However, since the electrical charges remain on the clothing, over 10% of the dirt reattaches to the laundry as soil redeposition. In the case of EM-1 ® Microbial Inoculant, soil redeposition does not occur because of the strong deionizing effect. It is appropriate to see this as fundamentally acting on oxidization and electrical charge carriage as the mechanism of wastewater.
Ultimately, I think wave is the fundamental element of the syntropy phenomenon. I explain this wave as gravitational waves. From among the various harmful energies, gravitational waves resonate with the magnetic portion and take up the energy. Usually when we use any kind of energy, it is changes into various waves. When a substance disintegrates, it emits gamma rays first, and then breaks up into X-ray, ultra violet ray, visible light, infra red light, far infrared light, microwave, and acoustic waves. These changing waves consist of both electric fields and magnetic fields. The results of my investigations so far seem to indicate that the wave which I assume to be gravitational wave, has a magnetic field or no electrical field. What is more it is a form of wave, and some kind of particles, and is something which is most difficult among the quantum theory and most difficult to explain. It has a property of moving in great resonance with magnets. It is an ultra-high frequency wave that approaches the magnetic fields of all substances and resonates with very low energy. For this reason, it takes up the energy in the environment which can no longer be used. This I assume is what I just talked about, the soiling is a phenomenon of energy. This kind of phenomenon may happen very rapidly or occur after a lapse of some time.
Take buildings as an example. When one inspects a house of 10 years or older built with EM Technology ®, one will find that the building is far stronger than the house originally built. The concrete gradually becomes more and more like limestone. Judging from the present condition, I was told this morning at the EM® Civic Engineering and Construction meeting that a building incorporating EM ® will last 300 years. Depending on the way Effective Microorganisms ® Technology is used, I feel that a building constructed with EM Technology ® will probably last 1,000 years. At present EM® Technology has started to be used for the protection of wood constructed cultural properties. EM-1 ® Microbial Inoculant was sprayed on old buildings and Buddhist statures, etc. It was wiped and then sprayed again. Alternatively, EM-X ® Ceramics is diluted 1,000 or 10,000-fold and sprayed together. By doing so, the softened parts of statues and buildings gradually become firm. Before we know it, these cultural properties become strong and revert to the original conditions. No doubt–swelling and decaying of the structure reflect increased entropy. However, by eliminating the oxidized substances and the electrical charge carrying property, the wood structure finally becomes firmly connected.
Until now, science has been developed with the presumption of an increase in entropy. In the 21st Century, it is difficult to find a solution with the continuation of this approach. That is because we are now faced with environmental pollution and many things are occurring. On the other hand, if we develop EM Technology ® as a new academic discipline, it is possible to change energy and contamination that can no longer be used into a form that can be re-utilized, in other words, this concept of syntropy. The time has come when we have to review medicine and science based on the concept of syntropy. Among many things, the easiest way to explain is to use Effective Microorganisms ® Technology. Amount the organisms in EM-1® Microbial Inoculant, the phototrophic bacteria (PNSB) are the ones that support the phenomenon of syntropy. The PNSBs organisms possess synthetic functions, and I think they function like plants. We tend to think of microorganisms as consumers that degrade and feed on organic substances. However, among microorganisms, many utilize the energy of chemical reactions or produce energy from water. Most of the members in this group dislike oxygen and they are not found on the surface. The PNSB that play the central role of Effective Microorganisms ® possess these functions. These organisms possess the capability of utilizing substances such as ammonia, carbon dioxide, and hydrogen sulfide, which have reached the limit of entropy as raw materials and produce sugars and amino acids.
Microorganisms that function in the same manner as plants include nitrogen fixing bacteria, chlorella, diatoms and many other types. At the present level, I think it should be understood that we have not even touched the field of microorganisms that are responsible for the function of rejuvenation in the real sense.
Thinking along this line, the fact that people get better by comforting the spirit or "Quigong" is without doubt the occurrence of syntropy phenomenon. There are many types of therapy that offer such mind comforting. In the past, I thought that this was a result of antioxidation, but that is not all it is. This kind of mysterious power can only manifest when some mechanisms are working that convert negative energy into positive energy and normalize the tissue. This often happens in the world of plant. When we add EM-X® Gold to a pine tree that anyone can tell is totally dead, before we know it the dead pine has recovered to a lush green. Usually, when pine trees have withered to the extent that the pine needles have turned red, it is almost impossible to revive. However, even under such situations, use of Effective Microorganisms ® Technology results in the sprouting of free buds.
A psychic once rubbed his hands in beans that had been boiled in hot water and the beans budded. This phenomenon is unbelievable from the common sense. But, projecting the syntropy theory, boiled dead beans are the result of extremely increased entropy and the beans died from the free radicals produced. Under this condition, if the energy is returned within a certain time, then it is not such an impossibility that the beans become normal again and bud. If we are able to understand this way, then I think this may be a chance for us to explain those supernatural phenomena. If we try to understand Effective Microorganisms ® Technology in this way and they try to understand supernatural phenomena other than Effective Microorganisms ® Technology, then I think we can start to use the syntropy approach.
With this background, various fields of applications have been emerged in Effective Microorganisms ® Technology Medicine as I have outlined in the abstract of my talk.
The first thing is an EM-1 ® Microbial Inoculant non-bathing method. Instead of taking a bath, EM-1 ® Microbial Inoculant is diluted 1 in 10 or 50 and used to wipe the body. When we do that, the soil from the body is converted into nutrients for the body, the bacteria on the skin turn into Effective Microorganisms ®. Therefore, there is no need to take baths. In fact, we are seeing persons requiring high level care whose conditions improve from wiping with EM-1 ® Microbial Inoculant without taking baths. This method is getting extremely popular as a new health approach.
The Second is EM-X ® Sea Salt. Common sense defines that salt is bad to the body. Substances such as salt that show strong chemical reactions increase the oxidation level and generate extremely active waves. However, EM-X ® Sea Salt produces phenomena that contradict common sense. The more one takes the EM-X ® Sea Salt, the great the blood pressure is lowered and the more diabetes is improved. These topics will be discussed by Dr. Tanaka later.*
The third is EM ® Rejuvinating Minerals. Trace minerals are recommended in addition to salt. The EM-X® Sea Salt exhibited today is produced by using coral from Okinawa and trace minerals and processing with EM-X ® Gold. As a result, all the oxidized substances are eliminated and the minerals are in an antioxidant state, meanwhile possessing the "EM" waves. It is matured for about 45 days and is baked at 300-400∫C to suppress deliquescence so as to stabilize the trace minerals. When EM-X ® Sea Salt alone does not cure a disease, use of the EM Rejuvenating Minerals seems to facilitate the cure. I take it myself and find that my eyesight has improved. Now I can read a newspaper without glasses. Both EM-X ® Gold and EM-X® Sea Salt have similar effects. If the general condition of the body does not improve, the eyesight would not have become better. I definitely sense this effect.
The fourth is a health house (conditioned with EM Technology ®). Dr. Kozawa will report on this topic. By filling all aspects of life with "EM" waves, the persons living in that house are able to actively maintain health just by living in the house.
The fifth is EM Technology ® in clothing materials. "Daizen" is exhibiting the clothing made with the Effective Microorganisms ® Technology. Starting from twisting the yarn, all the manufacturing processes in the factory have been processed with Effective Microorganisms ® Technology. Of course, the quality of the products is increasingly improved. Persons wearing clothes made with Effective Microorganisms ® Technology do not catch colds. They do not have stiff shoulders. Many speak of miracles such as being cured from poor physical conditions. If we apply Effective Microorganisms ® Technology to all aspects of life, this is going to play a very important role in preventative medicine.
The sixth is cosmetics made with Effective Microorganisms ® Technology. These include cosmetics and perfumes. An opinion until now was that the amount that enters the skin is not that large. However, careful examination found that a considerable amount enters the skin and promotes metabolism. We therefore started to use EM-X ® Gold even in cosmetics and perfumes.
The seventh is Effective Microorganisms ® Technology in soap, which is the eye-catcher in this exhibition. This amazing soap degrades the oils completely in the soiled part of the body, but it does not remove the oils necessary for the body. The soap has superb cleaning power, and after cleaning it possesses the power of cleaning up river waters. It is common sense that the soap removes dirt by polluting the water. When washing the scalp or skin with these soaps, it protects the living cells and activated them. The water after washing with EM ® soap has increased Effective Microorganisms ® content and has the power to clean up water. For the prevention of nosocomial infections in hospitals, using EM ® soap and EM-1 ® Microbial Inoculant together when cleaning clothes will increase effectiveness.
Hence all these properties of Effective Microorganisms ® can be transferred to all the materials. If treatment is not effective using EM-1 ®Microbial Inoculant and EM-X® Gold, I sense that it is because there is insufficient "EM" waves in total. By drinking EM-X ® Gold and consulting doctors of the EM Medical Research Group, almost all the patients are cured. However, we encounter an occasional patient who is not cured. There is a question as to where this person is living, does he live under high tension cables, or in an old concrete house full of molds, or a house built on top of a garbage disposal site, or working in a place that generates large amounts of free radicals. If a person lives or works in an unfavorable environment, then drinking EM-X ® Gold alone sometimes does not achieve the desirable effect. If we do not take a totalistic approach such as the clothing, bracelets, necklaces, shoes, and food, then just by drinking EM-X ® Gold or only taking EM-X ® Sea Salt may not achieve complete cure. In such cases, a comprehensive approach of increasing the overall antioxidant state should be considered.
On the occasion of this conference, we are also publishing the Clinical and Basic Medical Research on EM-X ®: A Collection of Research Papers, Volume 3. In this volume, we have gathered the papers that have been published in international journals, and various data that have been provided from different research institutes through our requests.